MOTION OF THE SIMPLE PENDULUM
March 1, 1993

C. Stuart Kelley

I. INTRODUCTION

Is the 2imple pendulum isochronal? Asked another way,
does its period depend on anything other than its length? I
want to answer this question by setting out a mathematically
precize description of the motion of a simple pendulum, use
thieg description to evaluate ite period, compare thig exact
degeription to other, probably more familiar, dezecriptions
that are approximately correct for small gwing anglesg, and
then examine other factorz that can influence the motion of
the simple pendulum. The material presented here is not new.
It can be found in many intermediate level physics textbooks.
An overview of the Physics of the pendulum can be found in
the book by Rawlings (Ref. 1). A more detailed assessment of
various factors that influence the motion of the pendulum is
given in a recent article by Nelson and Olsson (Ref. 2).

A simple pendulum consists of a dimensionless (point)
bob of mass M at the end of a massless, rigid rod of length 1
that swings freely from a suspension point that does not
move. Gravity is the only external force acting on the
pendulum. We assume that the gravitational force doesn't
vary in the course of the swing of the pendulum, and that the
Coriolis force (that tends to move the pendulum at right
angles to its motion) ie not an important factor governing
the motion of the pendulum. All frictional forces are
assumed to be gmall enough not to affect appreciably the
motion caused by the gravitational force. Likewisgse, elastic
forces involving a Suspension spring are not included; nor
are many other very real forces. In Section V, mention is
made of the impact of such factors as temperature, humidity,
ete.

The force on the mass M is the gravitational force, Mg.
The acceleration g due to gravity is usually taken to be 32.92
ft/sec/sec, which equals 386 in/sec/sec, and, as shown in
Sea.V, g does vary slightly with location on the Earth.

The pendulum shown in Fig. 1 12 given an initial push
that causges it to gwing from the equilibrium position, a = 0,
to the right to the maximum angle A, called the amplitude of
the swing. The gravitational force always tends to pull the
pendulum back to the vertical equilibrium position, a = 0,
but the motion of the pendulum takez it to the left to -A
before reversing direction. Physicists refer to the time
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needed for a complete swing froma = 0 to +A to 0 to -A to 0O
to be the period of the pendulum, Horologists refer to thisg
as twice the beat of the pendulum. So, a pendulum that has a
period of two seconds is gaid to beat seconds.

The dependence of a on time t and the dependence of the
Period T on 1 that are the most familiar:

A sin (2rnt/T) (1)

a

T = 2n(1/g)'/% (2)
where n % 3.141593, are, as is shown in Seec. II, only
approximate solutions to the exact equations of motion.

The next section describes the development of the exact
solutions to the equations of motion. Section III shows the
origin of the approximate solutions, Eqs. (1) and (2).
Section IV shows how accurately the approximate solutions
reprezent the exact solutions. Section V gshowsg the relative
importance of other factora that affect the motion of the
2imple pendulum.

II. EXACT MOTION OF THE SIMPLE PENDULUM

The gravitational force, Mg, is a vector, always

pointing toward the center of the earth. This vector
quantity can be represented by the vector sum of two
components: one, Mg cos a, pointing in the direction of the

pendulum, and one, Mg sin a, pointing perpendicular to the
pendulum. These two components are indicated by the dotted
arrows in Fig. 1. It ig the component Mg sin a,
perpendicular to the rod, that is responsible for the motion
of the pendulum.

A torque N exerted on a rotating object having a moment
of inertia I results in the radial acceleration d*a/dt? .

N = I dta/qe? (3)

The torque on the pendulum is the product of: the component
of the gravitational force that is perpendicular to the
pendulum rod, -Mg sin a, and the radius arm 1 through which
the force acts to produce the torque. The negative sign
means that the force isg always directed towards the
equilibrium point, a = 0.

The moment of inertia of the pendulum assembly is I =
ML . Inserting this and N = -Mgl sin a in Eq. (3) results
in:
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M1 dza/dtz = - Mgl sin a (4)

Dividing both zidez of this equation by Ml1 gives what I call
the First Equation of Motion of the Simple Pendulum:

d*azdt® = - (g/1) ein a (5)

The solution to this equation gives a as a function of
time t, from which the period of swing can be found. Notice
that the mass of the pendulum does not appear in Eq. (5).
Because of this, a and the period do not depend on the mass
of the pendulum. Consistent with our assumptions, the motion
of the pendulum is the same whether the mass of the bob is
large or gmall. The mass does not affect the motion. The
reason for this is that the rod is massless, and the mass of
the bob is concentrated in a point. If the rod has
appreciable mass compared to the bob, then the mass of each
would affect the period. This is elaborated on in Sec. V.
The assumptions we made are that the only force acting on the
pendulum is gravity, so frictional forces and elastic forces
are unimportant. Another assumption is that the value of g
does not change at the location of the bob a= the bob goes
through its motion.

A second equation governing the motion of the pendulum
is obtained from the physics principle known as the
Conservation of Energy, which states that the total energy
of an object--the sum of itg kinetic energy and its
potential energy--does not vary. The kinetic energy is
(1/2)Mvz, where v is the velocity. In these coordinates, the
kinetic energy of the pendulum is (1/2)M(lda/dt)*. The
potential energy is Mgh, where h iz the height above szome
arbitrary reference height. For convenience, let thie
reference height be at the suspenzion point of the pendulum.
Then the potential energy iz - Mgl cos a, and the total
energy of the pendulum is

(1/2) M1*(dasdt)® - Mgl cos a (6)

Conservation of Energy requires that the total energy be
constant. So the total energy of the pendulum is the same
when the pendulum is at any angle a and when the pendulum is
at the angle a (=A, the maximum angle of swing, called the
amplitude) for which da/dt = 0. Equating the total energy at
these two angles gives

(1/2) Mla(da/dt)z - Mgl cos a = -Mgl cos A (7)
Dividing both sides of this equation by (1/2)Mlz, and
rearranging terms, gives what I call the Second Equation of
Motion of the Simple Pendulum:
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da/dt = (2g/l).a[cos a - cos A]I; (8)

Differentiating this with respect to time gives Eq. (5), the
First Equation of Motion of the Simple Pendulum. Like the
First Equation, the Second Equation is independent of the
mass of the pendulum.

The solution to the First and Second Equations of
Motion, Eqs. (5) and (8), involving the dependence of a on t,
cannot be expressed in terms of simple functions.
Nevertheless, the dependence of a on t can be obtained in
terms of tabulated functions. The solution to Eq. (8) is
found by making thesge gubestitutions: cog a = 1 - 23in® a/2,
and

gin q@ = sin (a/2) / =in (A/2) (9)

After much simplification, the integration of Eq. (8) results
in

arc sinl[sin(a/s2)/2in(A/2)-]

UFY -1/a
(/1) t = [[1 - s1n?(a/2) sin?q) ! dq (10)

0

This is in the form of an Elliptic Integral of the First Kind
(see Ref. 3), which is defined by:

u

2 1 =t
F(u\v) = (1 - gin v gin" %) dx (11)

0

Using this definition, the exact solution to the equations of
motion of the pendulum is

I:\t

a
(8/1f = F(arc gin [G”V( /3)

TIN (A]A)

Although F(u\v) depends on u and v in a complex fashion, it
is no different than any other function that depends on one
or more variables. F(u\v) depends on the two variablez, u
and v, much the same ag sgin a depends on the one variable a.
Both F(u\v) and =in a are quantities that can’t be calculated
#agily, but must be looked up in tables of values. These
tables of values of F(u\v) are reproduced in Appendix A from
Ref. 3.

] \ A/2) (12)

Y2
Figure 2 shows plots of a vs. (g/l)l t for various

values of A, As we could anticipate, a increases from 0 at t
= 0 to a maximum of A at 1/4 the period, and returns through
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& = 0 at 1/2 the period, to -A at 3/4 the period, and to a =
0 at the end of a full period. The Z2haped of the curvez arse

reminiscent of sine curvesg, but they are not precisely the
same, as 1is shown in Sec. 1IV.

If we carry out the integration in Eq. (10) from 0 to 90
degrees, the corresponding time runs from zero to 1/4 the

period. So the exact solution for the period of the pendulum
is
n/2
1]a -t
(1/4) (g/1) T = [1 - sinz(A/2) ainlq] / dg (13)
(o]

Here we have introduced radian measure instead of
degrees for the angle that represents the upper limit of the

integral. In radian measure, n radians corresponds to 180
degrees. The conversion from degrees to radians is by
angle in degrees / 180 = angle in radians / n (14)

For example, 23 degrees corresponds to 0.401 radians.

Equation (13) is a simpler form of the Elliptic Integral
0t the First Kind becausze it depends on one lezg variable.
It is in the form known as the Complete Elliptic Integral ot
the Firgt Kind, K(z) (tables of values of K(z) are given in
Appendix B, taken from Ref. 3):

n/2
-
K(m) = J[1 - m sinlq] /adq (18)
0

K(m) is the same as F(n/2 \ arc =in mdz). If we multiply Eq.
(13) by 4(1/g)'*, we get an equation for the period of the
pendulum:

IE by

!

T = 4(1/g) Klsin®(A/2)] (16)

Notice that the period of the simple pendulum depends on
three, and only three, factors: l, g, and A.

The period of the pendulum increases as 1 increases. It
18 not in the same measure, though. Because T isg
proportional to the square root of 1, T increases slower than
1. This dependence of T on 1 is shown in Fig. 3 for a very

small amplitude of swing, and for the largest possible
amplitude of swing, A = 90 degrees. The figure lists
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gelected paire ot correzponding valueg of T and 1 for a
pendulum gwing of A = 10 degrees. Because T is proportional
to the square root of 1, doubling the length of the pendulum
increases the period of the pendulum by a factor of the
gquare root of 2, about 1.414. Notice that a 2-gzecond
pendulum (one that beateg seconde) 1s about one meter in
length (1 meter = 39.37 inches). A pendulum that beatsz with
your pulse (72 beats per minute) has a length of about twenty
2aven 1inchesgz.

The period of the pendulum also depends on g. The value
of g changes with latitude and with altitude above zea level,
although these changes are small. Section V zhows how these
small changes in g influence the motion of the pendulum.

The dependence of T on A is contained in the term
Klsin®(A/2)] in Eq. (16). If we divide both sides of Eq.
(16) by 2n(1/g)q1. we get

T/ 2n(1/)"1* = (2/7) Kisin®(as2)3 (17)

The quantity 2n(1/g)dl is Eq. (2), the equation for the
period when the amplitude of swing, A, ig small. Thus, the
right side ot Eq. (17) showz the error in T, as calculated by
Eq. (2). A plot of Eq. (17) is shown in Fig. 4. When A is
emall, T approximately equals 2n(1/g)41. The exact period is
within 1% of 2n(1/g)”* for A ( 22.79 degrees. For purposes
of comparison, I measured the values of A for several clocks.
An Ogee had A = 6 degrees, an English bracket clock, circa
1880, had A = 1.3 degrees. The pendulums of each of these
clocks, of course, don't meet the requirements we set for the
definition of a simple pendulum: these pendulums don't swing
freely; they are impulsed on each beat by a crutch or a
crown; they operate under non-ideal conditions, and they
experience frictional forces.

Values of the Complete Elliptic Integral of the First
Kind can be found from the table in Appendix B.
Alternatively, they can be calculated approximately from the
following equation (Ref. 3):

ES
K(m) = (n/2) [1 + (1/72)"m + (1‘3/2-4)1m1

+ (103'5/2'406)lm3+ 5% (18)

The series of three dots indicate there are an infinity of
other terms that follow these four, all in a form that can be
inferred from the previous terms.

Using this expansion series for K(m), Eq. (16) for the
period of the simple pendulum becomes:
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fa 2 4
T = 2n(1/8) [1 + (1/4) =in” (A/2) + (9/64) =ain (A/2)
A
+ (25/256) din (A/2) + ... ] (19)

Good accuracy can be obtained from using just the first
few terms. For accuracy to within 1%, only the first term is
needed up to 22.79 degrees of swing.

III APPROXIMATE MOTION OF THE SIMPLE PENDULUM

Equation (16) is the exact equation for the period of
the simple pendulum. For small swing amplitudes, Eq. (16) is
well approximated by Eq. (2). Equation (2) is probably more
familiar than is Eq. (16). The approximate equation can be
derived by the following analysis, which begins with The
First Equation of Motion of the pendulum

d%azat? = - (g/1) sin a (20)

The presence of sin a is the source of the exact, but
complex expregsion, Eq. (16), for the period of the pendulum.
If the swing of a pendulum is esmall, on the orden of a few
degrees, an approximation to zin a can be uszed that greatly
gimplifies the derivation and the reszult.

If a is in radian measure, the Fourier Series expansion
of sin a is -

An4)
sin a =Z(-1).n a ) /(2n+1)| =

g a - a3+ a%51 - alm) o — (21)
where n! = nEn=1) CA=2Y ; ;1. If a is very much smaller than
one, a“/3! is much smaller than a, and the higher-order terms
are even smaller still. For such situations, the small-angle

approximation
sin a N a (22)

is accurate (see the table below).

a (deg) sin a a (rad) a - a3/3! a - a3/3! + 35/5!
0 0 0 0 0
1 .01745 .01745
3 .05234 .05236 .05234
5 .08716 .08727 .08716
7 .12187 s 122:X3% .12187
10 .17365 .17453 .17364
20 .34202 .34907 .34198

30 .850000 .52360 . 498968



40 .64279 .69813 .64142 .64280
50 .76604 .87266 .761890 .76612

This small-angle approximation is accurate to 1% for
angles up to a = 13.98 degreez. For the valuez of A for the
clocks mentioned above, this approximation is sufficiently
accurate (as will be shown in the next section) that we can
rewrite the First Equation of Motion of the pendulum, Eq.
(20), as

d’za/dta = = (g/1) a (23)
A solution to this is
a = A sinl(g/1) "%y (24)

ag can b? found by taking the second time derivative of a.
Asg (g/l)'zt increases from zero to 2n, a completes a full
period, so that

/aT = 2n (25)

(g/lf

)
Dividing both sides of this equation by (g/l)/z. we find that
the period is

e
T = 2n(1/g)/ (26)

This is the expression for the period of a simple pendulum,
Eq. (2), with which we are most familiar. It ig only
accurate for small-angle amplitude ewinge, though.

For small-amplitude swings, the Second Equation of
Motion of the pendulum, Eq. (8), also glves Egs. (24) and
(26). To zee that thiz isg go, the first two terms of the

Fourier Series expansion (0] = 1)
o2
ZZ n_ an
cos a = (-1) a /(2n) | (27
neod
namely,
cos a1 - aly/g (28)
are substituted in Eq. (8) for cos a and cos A. The result
iz
ya ‘o
da/dt = (g/l)/ (Al - aa)/ (29)

Making the substitution r = a/A , and rearranging terms gives



WE 1]
Ern Py = bt a1~ AP (30)
0
Thig can be integrated with the substitution r = 8in y to
give
1/2 ,
(g/1) t = arc gin (a’za) (31)

which can be rearranged into the more familiar form
a = A sinfgs1) 4] (32)

This is the same as the solution found from the First
Equation of Motion.

IV COMPARISON OF EXACT AND APPROXIMATE SOLUTIONS

With a little mathematical rearranging, the exact
equation for the period, Eq. (16), can be written as

T = 2n(E/g) % (33)

where I introduce the "effective length", E, of the pendulum.
The “effective length” is

= (34)

E = 1((2/n) K[sina(A/Z)])
This means that the Period of swing of any pendulum can be
written in the approximate form of Eq. (2), and still give
the exact result, provided that 1 is replaced by E. That is,
a wide-swing pendulum has a period that corresponds to that
of a small-swing pendulum, but with a different, longer
length. Figure 5 shows a plot of E/1 as a function of A. In
the same way that the period depends on A, the ratio E/1
increases as A increases, with the ratio increasing from 1.0
at A = 0 to 1.3932 at A = 90 degrees.

For example, a pendulum of length 9.74 inches has a
period of 1 gecond for gmall-amplitude swings. It 1t is
swung at an amplitude of 60 degrees, its new period is 1.0732
geconds (gee Fig. 4). Using Eq. (2), thig new period
corresponds to that of a small-amplitude pendulum of 11.28
inch length. So we can say that for a 9.79 inch pendulum
with a swing amplitude of 60 degrees, the pendulum’s
effective length i1s 11.28 inches.

Figure 6 ghows the relationship between a and t for A =
40 degrees and A = 80 degrees. On the figure are two pairs
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of three curves (two of which are Sso close together on the

figure as to be indistinguishab;e from each other). The
solid lines show the exact relationship of a vs. t, as
calculated from Eq. (12). The dashed lines show a vsg. t for

the small-angle result, as calculated from Eq. (24). The
dash-dot lines show the small-angle result, but with 1
replaced by E, as given by Eq. (34).

As can be seen from these curves, use of the small-angle
equation always results in a period that is too amall.
Becauze of this, the emall-angle equation gets “out of gynch”®
with the exact result after several periods. This
synchronization problem is remedied by using the small-angle
equation with 1 replaced by E, but this equation consistently
under-estimates the exact value of a. In general, though, it
is a more accurate representation than is the small-angle
equation without the use of E.

Frictional wear tends to lessen the amplitude of swing.
This changes the period of the pendulum in accordance with
Eq. (16). 1If a pendulum could be devised that would ghorten
itzelf ae it swings outward and lengthen iteelf az it returns
to a = 0 in the correct fazhion, then the period of the
pendulum would not depend on itz amplitude. Thig is the
concept behind the cycloidal "cheeks"® invented by Christiaan
Huygens (see Refs. 1, 5, and 6).

Huygens devised a pair of cheeks fixed to the suspension
point (see Fig. 7) that cause the upper end of the suspension
gpring to wrap around the cheeks, thus gshortening the length
of the pendulum and keeping the pendulum isochronous even if
the amplitude of swing changes. Huygens discovered that the
proper shape of these cheeks is cycloidal, with an axis of
the cycloid being one half the length of the pendulum. This
is a truly remarkable discovery. A direct consequence of
this is that if you make a bowl whose cross section is
cycloidal, and place a marble on the surface, the marble
always takes the same time to get to the bottom, no matter
where the marble begins, whether near the bottom, or six feet
from the bottoml

The Complete Elliptic Integral of the First Kind, K(m) ,
can be expressed as the infinite series given as Eq. (18),
which allows the calculation of K, hence T, without the need
to resort to Appendix B. For small angles, m = gin™ (A/2) is
close to zero, and the terms in m™ , m¥Y, etc. are much
smaller than the term in m, so

Km) © (n/2) [ 1 + ms4] (35)

Correspondingly,



P
CENERATING CIRCLE
DIAMETER = { )2,

CycLop

CycLomAL ChEEkS

-

R _CycLe) AL Pary
= AENDLL Lay

202



~ Ja 2
T - 4(1/8) (n/2) [ 1 + (1/4) sgin (A/72)] (36)
and using the small-angle approximation sin (A/2) & A/2
T an /g1 s 2*167 (37)

The accuracy of this equation is indicated in the table
below.

!Ia t/..
A (degrees) T/2r(1/g) exact T/72n(1/g) Eq. (37)

0 1.0000 1.0000
10 1.0019 1.0019
20 1.0076 1.0076
30 1.0174 1.0171

V SOME FACTORS AFFECTING THE SIMPLE PENDULUM'S MOTION

As described in the previous sections, in the absence of
any forces other than gravity, the only factors influencing
the motion of a simple pendulum are: (1) its length 1, (2)
the gravitational acceleration g€, and (3) the amplitude of
swing A. These three factors are influenced by environmental
conditions. Temperature and humidity change the length of
materials from which pendulum rods are made. Latitude and
elevation affect g. Barometric pPressure, friction, humidity,
and ease of air flow around a non-zero sized bob can affect
A.

V a. The Effect of Changing a Pendulum’s Length

Using the exact equation for the period, Eq. (16),

T = B(1/g)/* (38)
where B = 4 K[sinx(A/Q)J. The value of B depends only on the

value of A. It doesz not depend on 1 or g.- Differentiating T
in Eq. (38) with respect to 1 gives

dT/dl = B(a1g)~'"* (39)
Dividing this by Eq. (38) and rearranging, gives

dT/T = (1/2) d1l/1 (40)
This equation gives the relation between the fractional

change in the period of a pendulum and the fractional change
in the length of the pendulum. Notice that a given



percentage change in 1, dl1/1, reszults in only halt that
percentage change in T. A 2% increasge in the length of a
pendulum gives a 1% increase in the period.

Equation (40) is useful for regulating pendulum clocks.
If you observe that your pendulum clock is gaining one hour a
day (dT/T = 1/24), you need to lengthen the pendulum by 8 1/3
% (dl/1 = 2 AT/T = 1/12 = 8 1/3 %). A more practical method
of regulating pendulum clocks is given in Ref. 4, which
relates the time gained or lost by a pendulum clock to the
number of turns needed to be taken on the rating nut to bring
the clock into regulation.

Materials expand and contract as their temperatures
vary. For this reason, pendulum rods made from a 2ingle
material vary in length asz the temperature varies. Although
the linear thermal coefficient of expansion, w, is different
for each material, most materials expand with increasing
temperature in accordance with

1 =1L (1 + wC) (41)

where L is the length of the material at zero degrees
Centigrade, and C is the temperature. The value of w for any
material depends on the grade and alloy of that material.
Typical steels, for example, can have values asg small as

9.07 x 107°(°C)", or as large as 1.21 x 10°7(°C)~'. The table
below presents values of w that represent averages of
different grades and alloys. The values are appropriate for
temperatures in the range of 10 degrees C to 90 degrees C.
Outside this range, the values of w are different.

Material w ((C) =x
Aluminum 2.3 x 10“,
Brass 1.9 = 10”°
Copper 1.7 x 1012
Glass 8.3 x 10
Invarx 7 % 1%L
Iron 1.1 2 1o’f_
Mercury* ** 6 x 10°%
Steel b4 ¥ 107
Wood 6 x 10

* (Nickel Steel, 36 % Nickel)

** (Values taken from Ref. 7)

*#%¥ The cubical expansion of liquid mercury ia V =V (1 +
oC), with a = 1.8 x 10°%(°)~" (Ret. 7). Correspondingly,
the linear thermal coefficient of expangion, one third
the cubical coefficient, iz w = 6 x 10=% (%0y*L.



The linear cocefficient of expanzion for wood iz

different for wood cut with the grain than it is for wood cut
against the grain. Pine cut with the grain has w = 5.4 x 10"

(°CY:, and pine cut against the grain has w = 3.4 x 10~
(°C)™". Cut parallel to the grain, the values of w for
varjous woods range from 2.6 x 10~°(°C)”" for beech to 9.5 x

10°°(°c)”! for ash.

- Notice that all these values of w are on the order of
10°°(°c)"!. This means that a temperature increase of 10
degrees Centigrade produces an increase in length of one
tenth of a millimeter per meter of length. Invar increases
only about one tenth of this. If you regulated your pendulum
(not made of Invar) at one temperature, and the temperature
increased by 1 degree Centigrade, the corresponding change in
length is about d1/1 = 1 x 10°%, Using Eq. (40), this
corresponds to a fractional change in period of about § x
10'9 or a gain of about three seconds per week. If the

pendulum were made of Invar, this change would have been
about one third of a second per week.

In a mercury-compensated pendulum, faster expanding
mercury compensates for the slower expanding pendulum rod
(typically of steel). A vial of mercury is seated on the tip
of the rod, and as the rod expands downwards, the mercury
expands upwards, so that the moment of inertia of the
pendulum assembly stays at the same point as the temperature
changez. To first order, the height of the mercury column,
hm' ig related to the length of the rod, ls' by:

=% =/£/h7nw‘m , o Haeas Cof Mas < ok G h,, (42)
where w,.refers to the linear thermal coefficient of
eéXpansion for mercury, and Ws refers to steel. Using Eq.
(42) for a steel pendulum with a period of two seconds, the
height of mercury that compensatez the expansion of gteel isg
about 72 Thches. This is not precisely right, though, as
pointed out in Sec V ¢ in more detail.

A question arises as to how much the expansion of the
glass vial's diameter reduces the rise of the mercury inside
the vial. The area of the glass vial increases at a rate of
twice the linear thermal coefficient of expansion of the
glass, or about 1.7 x 10°%(°C)~". Since the glass vial is
open ended, this is also the fractional increase in the
vial's volume. The vglume expansion of the mercury within
the vial is 1.8 x 107 (°C)"'. The volume expansgion of the
£glass vial reduces the mercury column by about one tenth,
Suggesting that the proper height of mercury for
compensation should be about ten percent larger than the 7.2
inches, or 7.9 inches, but, as mentioned in the last
paragraph, this is not precisely accurate (see Sec. V c).



V b. The Effect of Changing a Pendulum’s Amplitude of Swing

The amplitude of swing, A, is influenced Primarily by
the desgign of the escapement, be it anchor, verge, or
whatever. Becausge I wanted to focus on the physics of the
eimple pendulum, I don’'t include their effects here.

Rawlings describes some of these effects in Ref. 1. We can,
though, show how T is affected by variations in A without
examining how the escapement produces a change in A. Using
the infinite series expansion for T, Eq. (19), and taking the
derivative of T with respect to A,

dT/dA = 2x(1/8) 21 1/4 + (9/32) sin * (as2)
+ (75/286) sin4(A/2) + ...] 8in (A/2) co=s (A/2) (43)

Figure 8 i1s a plot of dT/da versus A. For example, suppose
we have a pendulum with T = 1 sec. and A = 5 degrees. From
Eq. (43) or Fig. 8, dT/dA is found to be 0.011. That is,

dT = 0.011 daA (44)

If the amplitude of swing were to change by, say, one
thousandth of a radian (about gix hundredths of a degree) ,
then the period would change by dT = 1.1 x' 10~ % sec, enough
to introduce an error in the clock's timekeeping of about
seven seconds per week.

V ¢. The Effect of a Pendulum Rod’s Mass.

Up to this point, the mass m of the pendulum rod was
negligible. Although m isgs always considerably less than the
masgs M of the bob, it is never zero. When the maszs of the
rod iz not zero, the equations of motion are changed. The
moment of inertia of the dimensionless bob and the rod
assembly about the suspension point is

a
I =m* + Surtav = m? « m?/3 (45)
where W is the density of the rod, r is the moment arm of the

elemental volume dV, and 1 is the length of the rod.

The torque acts through the center of mass, whose
distance from the Suspengion point

1L (M + m/2) / (M + m) (46)
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iz the radius arm. With Eq. (45) for I, Eq. (46) for the
radius arm, and M + m for the total mass of the assembly, Eq.

(3) becomes

(M + m/3)11d‘a/dt? = -(M+ m) g1l (M + m/2) s=in a (47)
(M + m)

This is an equation of motion that is identical to Eq. (5),
but with 1 replaced by

1M + m/3)/(M + m/2) (48)

This means that the equation of motion and the period of this
rod and bob aggembly are the zame as thoszse of the exact
derivation in Section II, namely, Eq. (12) for a, and Eq.
(16) for T. To account for the non-zero mass of the rod in
those equationsz, though, 1 muzt be replaced by Eg. (48).

With this replacement, the period becomes

® =A™ Rrala s I WAL & mram 1% (409

Notice that the period of the pendulum depends on
both M and m. This is different than the result found in
Section II, where the period is independent of the mass of
the bob. The reason why the period depends on M and m is
because the rod and the bob have different shapes. With
their different shapes, they contribute differently to the
expression for the moment of inertia of the assembly, and
they contribute still differently to the expression for the
center of gravity of the aszembly. These different
contributions result in an equation of motion that does not
simplify to the extent that it did in the derivation in
Section II.

As an example of the error m can introduce in the
timekeeping of a pendulum, consider a steel pendulum rod of 4
mm diameter and 1 m length with a mass of about 100 gm (the
density of steel is about 7.8 gm/cc), a pendulum bob of mass
M = 5 kg. Then the fractional error in the use of Eq. (2)
for T instead of Eq. (47) for T is about 2 x 1073,
representing a gain of about 2 1/3 minutes per day.

If m << M, then
|]1

(1 + m/3M) > & 1 + m/6M (50)
oy

(1 + m/2M) % W 1 - msaM (51)

and the period, Eq. (49) becomes

T 401 (1 - m/6M)/g] Kisin*(A/2)] ) (52)



In effect, 1 of Eq. (16) has been replaced by 1 (1 - m/6M).

The effect of the non-zero mass of the pendulum rod is
to zhorten the period. In effect, the center of mass of the
bob and the vrod iz shifted upward from the center of the bob
(where it would be if the maze of the rod were zero), =0 the
period of the pendulum is the same as the period of a
mazelegz-rod pendulum of a shorten length.

In a likewise fashion, the shape of the bob (sphere,
lens, cylinder, ete.) will altenr the above equations for the
moment of inertia of the pendulum asgembly.

The relationship between the torque and the radial
acceleration of the pendulum, Eq. (3), can be generalized by

= m‘g lcsin a = 1 dia/dtl (53)

where: m  is the total mass of the pendulum assembly, both
rod and bob; le is the radius arm, the distance from the
Suspension point to the center of mass of the assembly; and I
iz the moment of inertia of the asgembly, taken about the
suspension point. Rearranging Eq. (83) into the form of Eq.
(5)

dz'a/dt:1 == (g/lc) sin a (54)

where I define the true pendulum length to be

lt =1/ milﬁ (55)
The exact solution to Eq. (54) is Eq. (12), but with 1 there
replaced by 1. The pendulum performs the same motion, but

with a period that differs from Eq. (16), namely
‘a 2
T =4 (I 7 g mtlt) K[ =2in"(A/2))] (56)

Thus, the calculation of the true length of any pendulum
agsembly, and thereby its period, requires calculation of ite
center of mass and its moment of inertia.

Consider first the example of a spherical bob 'of radius
R at the end of a massless rod, such that the center of the
bob is a distance 1 from the suspension point. The moments
of inertia of a variety of shapes are found in Ref. 8, and
the relevant table is reproduced here as Fig. 9.

The moment of inertia of the bob about an axis through
ite center is (2/5)mR”™. Displacing that axis by 1 to the
Supsension point adds the moment ml%. This displacement term
comes via the Parallel Axis Theorem, which states that if the
rotational axis is displaced by an amount 1, and the axis
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remaing parallel to the original axiz, the resulting moment
of inertia is the original moment of inertia plusg ml*™. For
the prezent example

I = (2/5) m B>+ @m 1™ (57)

lc = 1 (58)

gso that the true length of this pendulum assembly is
2
l, =1 (1 + 2R /51%) (59)

The true length of this pendulum assembly is increased
over that of the simple pendulum (with a bob of zero radius) ,
so the pendulum in this example has a period longer than that
of the simple pendulum. The ratio of the period of the
pendulum in this example to that of the gimple pendulum iz

2 2 a
T (this example) / T (zimple) = (1 + 2R /517) (60)
Typically, 1 >> R, so
. 2 2
T (this example) / T (simple) = 1 + R /51 (61)

A 5-kg steel pendulum bob (of density 7.8 gm/cc) with a
radius of 4.67_ m at the end of a 1-m rod has a period of
about 5.7 x 10 sec longer than that of ja 1-m pendulum with

a dimensionless bob. Although 5.7 x 10~  sec doesn’t seem
like much, when compounded over a day’s run time, it
repregenta a lozz of 49 seconds. In summary, the higher the

denaity of the bob (hence the zmaller the bob) , the lesgs the
period is increased.

As an aside, what's the best metal to use? Lead? G@Gold?
Platinum? Uranium? No, the two most dense metals are Osmium
(22.5 gm/cc) and Indium (22.4 gEm/ca) . The dengity of Gold is
19.3 gm/cec, and Lead's density 12 a distant 11 gm/ce. At the
other end of the density scale, Rubidium had a dengity of
1.53 gm/cec, Magnesium 1.74, Beryllium 1.84, Aluminum 2.7.
Iron is in the middle at 7.9. If you made your pendulum bob
out of Osmium instead of steel, the period of the pendulum
would more closely approach that of the simple pendulum. By
how mueh? Instead of your pendulum losing 49 seconds per
day, with an Osmium bob, it would only lose 24 seconds per
day.

A more complicated pendulum than the example presented
above isg a mercury-compensated pendulum, whose pendulum
azsembly consists of a long, thin pendulum rod of length 1,
made of steel, say, which is joined at its lower end to the



bottom of a mercury column of radius R and height h.
Intentionally, I neglect the mass of the container for the
mercury. This pendulum assembly has a moment of inertia of

I =(1/3) m l:L + (1/74) M Rl + (17/12) M ha

Q£
+ M (1 - h/2) (62)

Here m is the mass of the rod, and M is the mass of the
mercury column, or bob. The first term on the right is the
contribution to I by the pendulum rod. The second and third
are the contributions to I by the bob, referenced to a
rotational axis at its center. The final term represente use
of the parallel axiz theorem to ghift the rotational axiz of
the bob from the center of the mercury column to the
guspensgion point. The radiuz avrm is

lg = [ml/2 + M (1 - h/2)] /7 (m + M) (63)

The total mass is m + M. The true pendulum length gimplifies
to

1=1 =h/2 + (zé)p* ¢ (172808 » with/a = 1785/ (64)
2 1(2 + m/M) - h

For this pendulum assembly to be compensated for thermal
expansion, 1, must be independent of temperature. As can be
seen from Eq. (64) and the appropriate versions of Eq. (41)
for a mercury bob and a steel rod, this is a very complicated
relationship.

V d. The Effect of Changes in Gravity

The gravitational acceleration, g, is usually taken to
be 32.2 ft/sec*®, but this varies from its smallest value,
32.0878 ft/sec? at the Earth’'s equator, to its greatest
value, 32.2577 ft/sec® at the Poles. This dependence of g on
latitude, be it north or south, is shown in Fig. 10 (which is

based on data in Ref. 7). The value of g decreases with
altitude above sea level, but not by much. This decrease is
-3.086 x 107“ tt/3e0/tt (Ret. 7). For a "standard
reference”, the value of g at Greenwich (latitude 51’28.6',

elevation 157 ft.) is 32.1912 ft/gecl.

Because the functional form of Eq. (38) involves g in
much the same way asz it involves 1, the relation

dT/T = - (1/2) dg/g (65)

can b= obtained in much the same way as wag the variation of
T with 1. The minus sign means that T decreases as g
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increazes. If you eget your pendulum cloaok correctly at
Monrovia, Liberia (latitude 6°19', elavation 135 feat, whers
8 = 32.0920 ft/sec®) and move it to Karajak Glacier,
Greenland (latitude 70%26.9’', elevation 66 feet, where g =
32.2354 ft/sec), the period of your clock will decrease by
0.222 %, or 192 =zeconds per day.

Because the gravitational force is directed towards the
center of the Earth, the direction of the gravitational force
varies as the pendulum swings. Thus the force vectors at the
ends of the swing of the pendulum aren't parallel, but are
angled inwards ever so slightly. As pointed out by Rawlings
in Ref. 1, the small-angle approximation to the period then

takes the form

I2 1R/ (re1) 12 (66)

t

T = 2n(1/g)

where R is the Earth's radius (3960 mi.). The difference

between using thie equation and using Eq. (2) amounts to
about 2 seconds per yeanr.

One assumption we made in Secs. II and III is that g
does not vary during the gwing of the pendulum. The
variation of g with height is very gmall, 2o the influence of
this variation on the period of a pendulum is also small.

For a pendulum that beats seconds with a 10 degree amplitude
of swing, this change in g with height introduces an error
that is less than six-hundredths of a second in the course of
a year. The Earth's tides are manifestations of changes in g
caused by changes in solar and lunar orientation. These
changes do affect the motion of an accurate pendulum-driven
regulator.

VI SUMMARY

The simple pendulum, consisting of a bob, supported by a
massless and inextensible rod, moving under the force of
gravity and no other force, is, of course, an idealization
not realized in practice. Its physics, however, illustrates
the factors that affect the motion of more complicated
pendulum assemblies.

The period of the simple pendulum depends on its length
1, the acceleration g due to gravity, and the amplitude A of
swing. Changes in temperature produce changes in 1; changes
in latitude and elevation produce changes in g; and changes
over time in frictional forces (not discussed here) in the
going train and changes in barometric pressure (resistance to
bob movement) produce changeg in A. There are many other
factors that produce changea in 1, g, and A.



Is the simple pendulum isochronal? The anzwer is a

conditional yes. The simple pendulum is isochronal to the
extent that 1, g, and A do not vary.
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APPENDIX A

The tables of values of F(u\v) presented below for the
Elliptic Integral of the First Kind are reproduced from
similar tables presented in Ref. 3.
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ELLIPTIC INTEGRAL OF THE FIRST KIND F{(s\a)
F(e\e)= [* (1-sin2 e sinze) " ds

5° 10° 15° 20° 25° 30?

0.08726 646 0.17453 293 0.25179 939 0.34906 585 0.43633 231 0.52359 878
0.08726 660 0,17453 400 0, 26180 298 0.34907 423 0,43634 855 0.52352 634
0.08726 700 0.17453 721 0.26181 374 0. 34909 952 0,43639 719 0,52370 903
0.08726 767 0.17454 255 0,25183 163 0.34914 148 0,43647 805 0,52384 653
0.08726 B60 0.17454 939 0,26185 656 0. 34919 998 0.43659 085 0.52403 839
0.08726 v&0 0.17455 949 0,26188 842 0. 34927 479 0.43673 518 0.52428 402
0.08777 124 0,17457 102 0,26192 707 0, 34935 55 0.43691 045 0, 52458 259
0.08727 294 0.174%2 451 0,26197 234 0. 34947 200 0.43711 605 0.52433 314
0.08727 487 0.17459 931 0,26202 402 0. 34959 358 0,43735 115 0,52533 443
0.08727 703 0.174%1 714 0, 26208 189 0.34972 983 0.43761 496 0, 52573 529
0.08727 940 0,17463 611 0.26214 568 0.34988 016 0.43790 635 0,52628 339

0.08728 199 0.17465 675 0,26221 511 0. 35004 395 0.43822 422 0,52682 837
0.08728 477 0,17467 895 0,26228 985 0. 35022 048 0.43856 733 0,52741 733
0.08728 773 0,17470 261 0,25236 958 0. 35040 991 0,43893 430 0,52804 924
0.08729 086 0.17472 762 0,26245 3392 0.35060 870 0,43932 365 0,52872 029

0
0,08729 41 0.17475 386 0.26254 249 0.35081 868 0,.43973 377 0,52942 843
0.08729 735 0,17478 119 0,24263 487 0. 35103 803 0.44016 296 0.53017 153
0.08730 108 0,17480 950 0,25273 0b4 0.35126 576 0,44060 933 0.53094 603
0.08730 472 0.17483 864 0,26282 934 0. 35150 083 0,44107 115 0.53174 916
0.08730 844 0.17485 848 0,26293 052 0.35174 218 0,44154 622 0.53257 745

0.08731 222 0.17489 837 0.26303 349 0.35198 869 0.44203 247 0.53332 745
0.08731 606 0,17492 967 0,25313 836 0, 35223 920 0.44252 763 0,53429 545
0.08731 992 0,17496 C73 0.256324 404 0, 35249 254 0.44302 959 (0.53517 741
0.08732 379 0.17499 189 0.26335 019 0. 35274 748 0.44353 534 0,53606 985
0.08732 765 0.17502 300 0,256345 633 0, 35300 280 0.44404 397 0.53696 793

0.08733 149 0.17505 392 0,26356 191 0, 35325 724 0.44455 151 0.53736 765
0.08733 528 0,17508 448 0.26366 643 0. 35350 955 0.44505 593 0,53876 433
0.08733 501 0,17511 455 0,26376 936 0, 35375 845 0.44555 469 0,53365 353
0,08734 265 0,17514 397 0.26387 020 0.35400 269 0,44604 519 0.54053 059
0.08734 620 0.17517 260 0,26396 842 0. 35424 101 0.44652 437 0,54139 053

0.08734 962 0.17520 029 0,26406 355 0, 35447 217 0.44699 117 0.54222 911
0.08735 291 0.17522 630 0.25415 509 0, 35469 497 0,44744 153 0,54304 111
0.08735 605 0.17525 232 0,26424 258 0. 35490 823 0.44787 348 0.54382 157
0.08735 902 0.17527 640 0,26432 556 O0,35511 021 0.44828 459 0, 54456 704
0.08736 182 0.17529 503 0.26430 362 0. 35530 160 0.44867 252 0.54527 182

0,08736 442 0,17532 010 0.26447 634 0, 35547 959 0.44903 502 0,54593 192
0.08736 681 0.17533 949 0, 25454 334 0.35564 377 0.44936 997 0.54654 3154
0,08736 898 0.17535 712 0.26460 428 0. 35579 326 0,44967 538 0.54710 152
0.08737 052 C.17537 289 0,26465 883 0,35592 721 0.44994 944 0, 54760 354
0.08737 262 0.17538 672 0.25470 671 0. 35604 438 0.45019 045 0.54804 587

0.08737 408 0.17539 854 0,26474 7656 0.35614 560 45039 699 0.54842 535
0.08737 528 0.17540 830 0.26478 147 ©. 35622 881 45056 775 0,54873 947
0.0DB737 622 0.17541 534 0,25480 795 0. 35629 402 . 45070 168 C.54898 408
0.08737 €89 (0.17542 143 0.26482 697 0.35634 086 45079 795 0.54916 343
0.08737 730 0.17542 473 0,26483 842 0. 35636 908 0.45085 596 0, 54927 042

0.08737 744  0.17542 583 0.26484 225 0, 35637 851 . 45087 533 0,54930 614

o

o OPQOO



ELLIPTIC INTEGRAL OF THE FIRST KIND F(y o)
F(v\°)=ﬂ;(l—sinzasin? 0
CAE 35° 40° 45° 50° 55°

=3

0 0,61086 524 0.692813 170 0.73539 816 0,87266 463 0.95993 139
2 0.61090 819 0.69319 436 0,78548 509 0,87278 045 0.95008 017
4 0.61103 691 0.69323 220 0,78574 574 0, 87312 733 0.96052 821
b 0.61125 108 0.69849 484 0,78617 974 0.87370 649 0.96127 450
8 0.61155 010 0.69913 161 0,78678 644 0,87451 593 0.96231 9il
19 0.61193 318 0,69959 159 0.73756 494 0.87555 545 0.96366 182
12 0,61233 927 0,70037 358 0.78851 403 0.87682 412 0. 95530 224
3 0.61294 707 0.70117 608 0.78963 221 0,87832 075 0.94723 393
15 0.61357 504 0,70209 730 0.79091 768 0,88004 389 0,96947 433
13 0.61428 140 0,70313 511 0.79236 827 0,88199 174 0.97200 452
23 0,61505 406 0,70423 705 0.79398 143 0,88416 214 0.97482 950
22 0, 61592 071 0,70335 037 0.79575 422 0,88655 254 0,97794 790
< C.61684 871 0,70632 183 0,79768 324 0.88915 932 0.98135 773
2% 0.61784 515 0.70833 738 0.79976 461 0,89198 071 0. 98505 &£51
23 0.61890 632 0.70997 451 0,80199 389 0.89501 076 O0.98904 227
30 0,62003 018 0.711%44 728 0,30436 610 0,89824 524 0.99331 039
32 0.62121 138 0.71341 124 0,80687 558 0.90167 852 0.99785 743
34 0.62244 €22 0.71525 038 0,20951 599 0.90530 415 1.00267 743
35 0.62373 019 0.71713 052 0,81228 024 0,90911 455 1.00775 433
33 0.62505 840 0.71913 335 0,51516 039 0,91310 143 1.01311 039
49 0.62632 563 0.72126 235 0,81814 765 0.91725 487 1.01870 633
42 0.62732 630 0.72338 382 0,82123 227 0.92156 370 1.02454 127
34 0.62925 446 0.725356 741 0,82440 346 0,92501 535 1.03060 230
4% 0.63070 385 0.72773 615 0.82764 941 0.93059 553 1.03687 427
43 0.63216 783 0,73003 &40 0.83095 712 0,93528 835 1, 04333 945
59 0.63353 947 0,73230 789 0.83431 247 0,94007 568 1, 04397 733
5 0.63511 150 0,734338 §70 0.83770 OL0 0,94493 756 1.05676 412
5% 0.63657 639 0,73587 028 0,84110 344 0,94985 177 1.05347 243
56 0,63802 636 0.73913 751 0.84450 468 0,95479 381 1.07067 128
58 0.63945 343  0,74137 870 0,84783 483 0,95973 632 1.07772 515
60 0.64084 944 0,74353 071 0.85122 375 0.96465 155 1,08479 434
£2 0.64220 613 0.74572 998 0.85450 024 0,96950 647 1.09183 436
&3 0.64351 521 0,74781 286 0,85769 220 0,97426 773 1.09379 401
€3 0.64476 839 0.745281 471 0.B4077 677 0.97889 945 1.10562 535
LY} 0.64595 751 0,75172 208 0.86373 057 0,98336 405 1.11225 332
72 0.54707 458 0,75352 078 0,84652 996 0.93762 253 1.11864 920
72 0.64311 189 0,75519 716 0,86915 135 0,99163 507 1.12471 530
74 0.64306 209 0.75673 800 0.87157 159 0,99536 164 1.13039 401

75 0.54361 829 0,75313 0756 0,37376 830 0.99876 287 1.13551 610
E 0.53067 415 0.75936 376 0,87572 037 1,00180 057 1.14031 304

0.65132 394 0,76042 240 0,87740 833 1,00443 942 1.14441 292

g2 0.65136 270 0.76130 931 0,87881 481 1.00664, 678 1,14787 252
ER 0.65228 622 0,76200 457 0,87992 495 1,00839 473 1.15062 010
£3 0.65253 116 0,76250 582 0.38072 675 1,00966 025 1.15261 652
=3 0.65277 510 0,76230 2846 0,85121 143 1,01042 633 1,15382 528
50 0.6.283 658 0,76290 965 0.38137 359 1,01068 313 1.15423 455

60°
1,04719
1,04733
1,.04794
1.04833
1,05013

1, 05187
1,05394
1,055638
1,03919
1,05239

1.056356
1. 05532
. 07425
. 07897
. 08407

. 08955
. 03530
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1.31695

755
465
603
134
273

911
160
099

3384

891
405
976
628
347

067
656
899
574
933

567
880
546
369
731

637
652
233
€50
307

661
139
660
575
233

988
218
482
695
435

321
435
leé

5 170

510
790



ELLIPTIC INTEGRAL OF THE FIRST KIND F(\a)
F(o\a)= [*(1-sin?asin2 ) ~*ds

G\O 65. 709 750 son 850 900

0° 1.13446 401 1.22173 048 1.30899 694 1.39626 340 1,48352 986 1,57079 633
2 1.13469 294 1,22200 477 1.30931 959 1. 39663 672 1.48395 543 1,57127 495
4 1.13537 994 1,22282 B10 1,31028 822 1.39775 763 1,48523 342 1,57271 244
6 1.13652 576 1,22420 180 1.31190 491 1.39962 909 1.48736 769 1.57511 361
8 1.13813 158 1.22612 810 1.31417 314 1.40225 598 1,49036 470 1,57848 658
10 1.14019 906 1,22861 010 1.31709 778 1.40564 522 1,49423 361 1,58284 280
12 1.14273 032 1,23165 180 1.32068 514 1,40980 577 1.49898 627 1,58819 721
14 1.14572 789 1.23525 BO8 1.32494 295 1,41474 871 1,50463 742 1,59456 834
16 1.14919 471  1,23943 470 1.32988 047 1.42048 728 1.51120 474 1.60197 853
18 1.15313 409 1,24418 827 1.33550 840 1.42703 700 }.51870 904 1.61045 415
20 1.15754 967 1.24952 627 1,34183 901 1.43441 578 1.52717 445 1,62002 590
22 1.16244 535 1,25545 700 1, 34888 616 1.44264 399 1,53662 865 1,63072 910
24 1.16782 525 1,25198 957 1,35666 531 1.45174 466 1,54710 309 1, 64200 414
26 1.17369 362  1.26913 385 1,36519 359 1.45174 360 1,55863 334 1,65569 693
28 1.18005 472 1.27690 045, 1.37448 981 1.47266 958 1,57125 942 1,67005 943
30 1.18691 274 1.28530 059 1.38457 455 1. 48455 455 1,.58502 624 1,68575 035
32 1.19427 162 1.29434 605 1, 39547 013 1,49743 384 1,59998 406 1,70283 594
34 1.20213 439 1,30404 906 1.40720 064 1.51134 644 1,61618 906 1, 72139 083
36 1.21050 542 1,31442 210 1.41979 193 1,52633 523 1.63370 398 1,74149 923
38 1,21938 520 1,32547 772 1.43327 179 1.54244 734 1.65259 894 1,75325 618
40 1.22877 499 1.33722 824 1.44766 938 1.55973 441 1,67295 226 1,78676 913
42 1.23867 392 1.34968 545 1, 46301 565 1.57825 301 1,69485 156 1,81215 985
44 1.24907 904 1.36286 013 1,47934 287 1. 59806 493 1,71839 498 1,83956 672
45 1.25998 475 1,37676 148 1, 49668 437 1.61923 762 1.74369 264 1,85914 755
48 1.27138 210 1.39139 640 1,51507 416 1.64184 453 1,77086 836 1,90108 303
50 1.28325 798 1.40676 855 1.53454 419 1, 66596 542 1,80006 176 1,93558 110
52 1.29559 414 1,42287 717 1.55513 354 1.69168 665 1,83143 068 1,97288 227
54 1.30836 604 1,43971 560 1.57686 709 1,71910 125 1,86515 414 2,01325 657
56 1.32154 149 1,45726 935 1.59977 378 1,74830 880 1,90143 591 205706 232
58 1.33507 910 1.47351 372 1.62387 409 1.77941 482 1.94050 873 2,10465 766
€0 1.34892 643 1,49441 087 1.64917 867 1.81252 953 1.98263 957 2,15651 565
62 1,36301 803 1.51390 609 1.67568 359 1.84776 547 2,02813 570 2,21319 470
64 1,37727 323  1.53392 332 1.70336 398 1.88523 335 2,07735 219 2.27537 643
66 1.39159 384 1,55435 972 1.73216 516 1.92503 509 2,13070 052 2.34390 472
68 1.40586 195 1,57507 940 1.76199 085 1.96725 237 2,18865 839 2,41984 165
70 1.41993 796 1,59590 624 1,79268 736 2.01192 798 2,25177 995 2.50455 008
72 1.43365 925 1,61661 644 1.82402 292 2,05903 582 2,32070 416 2.59981 973
74 1.44684 001 1,63593 134 1.85566 175 2.10843 282 2.39515 610 2,70806 762
76 1.45927 266 1,65651 218 1,88713 308 2,15978 295 2.47892 739 2,83267 258
78 1.4707? 163 1,67495 873 1.91779 814 2,21243 977 2,56980 281 2,97856 895
80 1,48098 006 1,59181 489 1, 94682 231 2,26527 326 2,66935 045 3.15338 525
a2 1.48977 975 1,70858 456 1.97316 666 2,31643 897 2.77736 743 3.36986 803
84 1.49690 410 1.71876 033 1.99542 118 2.36313 736 2.89146 664 3, 65185 597
85 1.50215 336 1,72786 543 2.01290 452 2,40153 358 3.00370 926 4,05275 817
83 1.50537 033 1.73350 464 2.02384 126 2,42718 003 3,09448 898 4, 74271 727

30 1.50645 424 1,73541 516 2,02758 942 2.43624 605 3,13130 133 oo



APPENDIX B

The tables of values of K(z) presented below for the
Complete Elliptic Integral of the First Kind are reproduced
from similar tables presented in Ref. 3.



0. 49
0.50

COMPLETE ELLIPTIC INTECRALS OF THE FIRST KIND

1,57079
1.57474
1.57873
1.58278
1.58686

1. 59100
1.59518
1.539942
1.60370
1.60804

1.61244
1.51488
1.62139
1. 62595
1, 63057

1.63525
1, 63399
1. 64480
1, 54567
1. 65461

1, 65962
1. 66470
1. 66985
1, 67507
1. 58037

1, 68575
1,49129
1,59474
1,70237
1.70808

1,71388
1,.71978
1.72577
1,73136
1.73805

1, 74435

1,75075
1.75726

7155

1. 84559
1,85407

K("‘)-J: (1-m sin? ¢) *do

K(n)

63267 94897
55615 17356
99120 07773
03424 06373
78474 54166

34537 90792
82213 21610
32446 58510
96546 39253
86199 30513

13487 20219
90905 05203
31379 80658
48290 38433
55488 81754

67322 64580
98658 64511
64907 98881
82052 94514
66675 22527

35986 10528
07858 45692
00860 83368
34293 77219
28228 48361

03548 12596
81991 B6631
86201 96168
39774 10990

|

67311 34606

94481 78791
48080 56405
560956 29320
47782 52098
53734 56358

05972 25613
18029 15753
85048 82456
83888 83731
73233 33534

93714 91253
88046 81873
01166 52966
BC391 87685
75591 07699

39368 16983
27265 56821
97985 64730
13633 55796
39983 74724

46773 01372
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3,69563 73629 B9875
3,35414 14456 99160
3.15587 49478 91841
3.0%611 24924 77648

2,90833 72434 44552
2,82075 24967 55872
2.74707 30040 24667
2,68355 14063 15229
2.62777 33320 84344

2.57309 21133 48173
2.53333 45460 02200
2.49263 53232 39716
2.45533 80283 21380
2,42093 29603 44303

2.3B501 64353 25580
2,35326 35347 45007
2.33140 85677 50251

+ 2.30523 17368 77189
. 2,28054 9138° 22770

2,25720 53258 20854
2.23506 77552 60349
2,21402 24978 46332
2,13397 09253 19189
2,17482 70902 46414

2.15651 56474 99643
2.13897 01837 52114
2.12213 18631 57336
2,10594 83200 52758
2,09037 27465 52360

2.07536 31352 92469
2,06088 16467 30131
2.04539 40772 10577
2.03336 94031 52233
2,02027 94286 03592

2.00759 83984 24376
1.99530 27776 64729
1,98337 09795 27821
1,97178 31£17 25656
1.96052 10441 65830

1.94956 77438 06026
1.93890 76652 34220
1,92852 £3181 14418
1.91341 C2591 09912
1.50854 701462 81211

1.83892 43102 71554
1,83953 30738 53096
1,88036 13596 22178
1.87140 02398 11034
1. 86264 08023 32739

1. 85407 46773 01372



