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“This thou must always bear in mind, what is the nature of the whole…..” 

“ Look always at the whole.” 

            Marcus Aurelius, Philosopher and Emperor  

 

1- Objective of this article 

This article  follows a similar one written in 2013 and published on Horological Science News, 2. 2013 

(Mathematics of a clock escapement). The aim is here to offer a comprehensive and simple,  yet useful and 

extensible, mathematical model  of a watch escapement. I believe that a reasonably good mathematical model 

can be useful for watch design, modification and repair.  

Many mathematical treatments of watch escapements specific issues are available [Defossez, Reymondin, 

Vermot, Rawlings, Daniels etc.] but I believe that an overall, versatile analytical model, based on the use of 

simple mathematics and of common computer applications (e.g. Spreadsheets and Vector Drawing Programs), 

together with the use of the mentioned already available specific studies, can still be useful and this is one of 

the objectives of this article. The Drawing Program necessary must allow the independent rotation and 

translation of the three escapement objects (Balance, Anchor and Wheel) in order to position them in the 

desired place for graphical derivations necessary to the calculation. As an alternative to the use of a Drawing 

Program, the method suggested in [Daniels] can be used. This method is based on the use of three scaled 

shapes for Wheel, Anchor and Balance, cut into a paper sheet, pinned on a drawing table or similar support, 

and moved individually in order to assume the desired positions with respect to the other parts of the 

escapement. 

A number of experts in horological practice believe  that the too many unknown watch features (friction losses 

in the first place) make almost useless any attempt to build a watch model. The presence of this difficulty, 

however, exists in any engineering undertaking, yet mathematical models are used everywhere. Examples are 

so easy to find that it is not necessary to list them here; I will only mention the model used (when Finite 

Element Models are not employed) to study stresses and deformations in a beam system, the De Saint Venant 

Solid Model, which is very far from the real thing to study. The key to the use of engineering mathematical 

models is to do the best in creating them (although imperfect), to test them against the real behaviour and to 

refine them, maybe using some empirical factor here and there, in order to reach a sufficient level of accuracy 

in the results. 

 

2- Type of escapement chosen 
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The watch movement used for this exercise on model description is  the one based on the Swiss Anchor 

Escapement shown in  Fig. 1, which is also a reference for some nomenclature used. 

Many descriptions are available on the functioning of this very ingenious movement [e.g. Defossez, Vermot] so 

they will not be replicated here; however, in the Appendix, a modified summary of the Defossez and Vermot 

descriptions is presented. 

Many numerical data used are taken, for  the sake of a consistent set, from [Vermot]. 

Symbols used and numerical data are listed in  Section 10. 

The here suggested calculation procedure could be applied with pertinent modifications, to other types of 

watch escapement mechanisms. 

 

 

 
                                Figure 1, Watch lever escapement 

 

 

 

 

3- Method used 

 The method proposed here consists in arbitrarily, yet with justification, splitting the mathematical model into 

two parts: 

 

- The first part studies the movement of the three main parts of the escapement (Balance, Anchor and 

Escape Wheel) neglecting any friction loss and also the impulses received by the Balance from the 

Anchor. This first part can be named “basic model”. 

- The second part studies energy losses (due to friction and other main effects) and energy gains (due 

ultimately to the action of the power spring) of the balance, as small perturbations of the basic model. 

 

Anchor 
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This procedure is justified by the very small entity of the Balance energy losses and gains as compared with the  

energy (kinetic plus spiral spring stored energy) of the Balance itself; the results of the “basic model” 

give a good approximation of the escapement motion, while the study of energy gains and losses of the 

Balance (second part of the model) serves to refine the overall result and, in particular, to determine the exact 

value of the amplitude of the Balance oscillation. An approximate value of this amplitude has to be initially 

“assumed” in the “basic model” on the basis of normally used values in the watch design practice.  

Six decimal places have been used, where possible, through the calculations. 

This method, I believe, makes the treatment of the problem rather simple and versatile, yet sufficiently 

accurate for practical uses.  

 

 

4- Balance movement 
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Fig. 2 Position 1 of the escapement 

(Starting position) 

 

 

Under the assumptions listed in Section 3, the equation of the Balance movement is, simply: 

 

 

                                                                      𝜽̈ +𝝎𝟎
𝟐  𝜽 = 𝟎                               (1) 
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 Where: 

              𝝑       is the Balance angle measured counter-clockwise from       
𝑂3 𝑂1 
→        

              𝜔0     is the own rotational speed of the Balance (= 2𝜋/𝑇), 15.708 𝑟𝑎𝑑/𝑠  

               T       is the own oscillation period of the Balance (=2𝜋√𝐽𝑏 /𝐾 ),    0.4  [s] 

 

The solutions of equation (1) for  and 𝜃̇ are: 

 

                                                                                                   =0 sin ( 0 t )                     (2) 

                                                                                                                                                     

 

                                                                                                   𝜃̇= 0 0 cos ( 0 t )             (3) 

               

 Where:  

               0 is the amplitude of the oscillation of the Balance which is initially assumed equal to 270° (= 3/2                                                  

                [rad] = 4.7124 [rad] (a second iteration of the calculation on the basis of the energy balance                       

                evaluation, will suggest the need to refine this initial value). 

 

                t is the time [s] 

 

The oscillation, then, spans from +270° to -270° and vice-versa. This angle is usually kept at  a rather high value 

in order to keep high the energy of the Balance (and so to ease the movement imposed to the Anchor fork )and 

to minimize the effect of accidental shocks on the own period of oscillation of the Balance itself as shown by 

the Airy’s formula for short shocks (instantaneous variation of the rotational speed) [Defossez]: 

 

                                                                                    ∆𝑇 =
𝐽𝑏

𝐾

𝜗 𝑑𝜗̇

𝜗0
2                    (4) 

        

 

The spreadsheet results for equations (2) and (3) are shown in Fig. 3. The first and the second columns show 

the time t[s] with two different starting points: in the first column the time runs from 0 at the position =0 of 

the balance, while in the second column the time assumes the 0 value at the impact of the Jewel Pin D against 

the Anchor fork towards right. The second column is the one used to draw the graph of the Balance oscillation. 

In Fig. 3, the drawing containing two circular arrow segments represents the sequence and amplitudes of the 

various phases of the Balance movement. 

Points 1 and 3 on the graph indicate the instants of left and right impact of the Balance Jewel Pin with the 

Anchor fork; points 2 and 4 indicate the instants when the fork is left by the Jewel Pin near , respectively, the 

right and left Banking Pins (BP2 and 1).  
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The graph in Fig. 3 would be very slightly altered (and in a measure which could not  be drawn  in one sheet of 

normal paper) if the impulses originated by the Wheel and Anchor were considered. Also recalling a specific 

calculation of Balance- Anchor fork  shocks (5 shocks considered)  [Vermot, CD Section “Dégagement d’entrée”] 

the variation (before and after each shock) of the  rotational speed of the Balance is considered zero for  a 

calculation with two decimal places. This means that the maximum variation of the same rotational speed for 

each shock is lower than 0.01 [s-1]. Then, according to the Airy’s formula (4), the variation of Balance own 

period at each shock is lower than ∆𝑇𝑣𝑎𝑟: 

 

   ∆𝑇𝑣𝑎𝑟 =
𝐽𝑏

𝐾

𝜗 𝑑𝜗̇

𝜗0
2    =  

2∗10−6

5.03∗10−4
∗

24°

57.2958
∗

0.01

4.71242
= 7.5 ∗ 10−7 [s]              (5) 

 
 

  

 

 
 

                                             Fig. 3 – Balance movement as calculated in the “basic model”         

 

 

 

 

The results (spreadsheet) of this section are one of the basis for calculation of the Wheel and of the Anchor 

movement in the next Sections. 

 

5- Wheel movement 
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The Wheel angle of rotation  from the left block position (Fig. 1) to the right block position (Figure 10 in the 

APPENDIX, right) is composed of four phases [Vermot]: 

1- Unlocking of the Wheel  from the anchor left pallet (total angle from center point O1 =2 e= 20.00582 

[rad]=0.01164 [rad]=  20.33346°, value taken from a good drawing of the escapement); this angle 

corresponds to 0.0436 [rad] (2.5°) for the anchor (again from drawing, center O2) and to 0.20944 [rad] ( 

12°) for the Balance (center O3). 

2- First part of the left impulse to the anchor pallet (pallet impulse angle  for Wheel  p = 0.11345 [rad] = 

6.5°, from drawing), corresponding to 0.10472= 6° for Anchor and to 0.4189 [rad] (24°)for Balance 

3- Second part of the left  impulse  (tooth impulse angle for Wheel  t = 0.06981[rad]= 4° from drawing), 

corresponding to 0.0436 [rad] = 2.5° for Anchor and to 0.1745[rad]=10° for Balance 

4- Fall of the Wheel on the right pallet angle, f = 0.02618 [rad] =1.5°, corresponding to 0.00873 [rad] 

=0.5° for the Anchor 

 

The first part of the left impulse starts at the end of unlocking and lasts until the “beak” of the Wheel tooth 

is in contact with the impulse plane face of the left pallet. After this point, the contact is between the plane 

face of the tooth and the plane face of the pallet (start of the second part of the left impulse). This passage 

[Vermot, 9.4] is marked by a significant drop in the couple transmitted to the Anchor by the Wheel, due to 

the mechanical differences of the two situations. This is the reason why this point is a likely position for a 

stop of the watch, if the power couple is too low. The contact ends when the plane face of the tooth comes 

in contact with the “beak” of the left pallet. The fall of the Wheel follows. 

 

The times of rotation for these four angles are: 

- Unlocking:      

                                 
𝛿𝑒

𝜔𝑤
=

2∗0.00582

(3.8154+4.5772)/2
=
2∗0.00582

4.1962
= 2 ∗ 0.001387 = 0.002774 𝑠     (6) 

 

Where : 3.8154 [rad/s] is the angular speed of the Wheel  at the start of the unlocking (just after the first 

contact between Balance jewel pin and anchor fork, [Vermot pg. 565 and Section  “Dégagement d’entrée” 

on enclosed CD] and 4.5772 [rad/s] is the corresponding value at the end of the unlocking. The average 

value between these two speeds is used here due to the small duration of the unlocking. 

At the start (and, practically, during the unlocking), the rotational speed of the anchor is equal to 28.618 

[rad/s] [Vermot, ibid.] and the rotational speed of the Balance is 73.73 [rad/s] (Fig.3). The value for the 

Anchor is obtained by the conservation of momentum in the impact between Balance and Anchor (see 

mass moments of inertia in the Section “Symbols used and Data”). 

The fact that the angular speed of the Wheel is so lower than the speed of the Anchor is explained by the 

fact that the two rotation circumferences are far from tangent to each other and intersect at an angle 

dependent on the initial angle of the Wheel (- 0), on  the Draw angle of the left Anchor pallet and on the 

unlocking angle  as seen from the Anchor center of rotation O2. 

Once the rotation speed of the Anchor at the unlocking(= 28.618 [rad/s]) is known by the impact equation, 

the Wheel speeds can also be determined graphically on a good escapement drawing. 
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- First and second part of the impulse: 

 

First part:                       
0.11345 

19.6615
= 0.005770  [s]                                                           

 

Second part:                   
0.0698

15.9947
= 0.0044         [s]                                                          (7) 

 

- Fall of the Wheel  on the right pallet: 

The time taken in this part of the Wheel movement can be calculated by the equation governing the 

free motion of the Wheel under the action of the couple transmitted to it by the Gear Train Cw [N/mm]: 

 

                                𝐽𝑔𝑡 
𝑑𝜔𝑤

𝑑𝑡
= 𝐶𝑤                                                                    (8) 

 

                                  𝜔𝑤 = 
𝐶𝑤

𝐽𝑔𝑡 
 ∗ 𝑡 + 𝜔𝑤0                                                     (9)                           

 

                                           ∝𝑤= 𝜔𝑤 ∗ 𝑡 =  9.048 ∗ 10
4  ∗  

𝑡2

2
+ 15.9947 ∗ 𝑡 + 𝛼0               (10) 

𝛼0 is put to 0 (origin where the fall starts) 

 

The positive solution of equation (10) is:  

                                           t = 0.0009578 [s]                                                                        (11) 

 

 

The total travel time of the Wheel from the left locked position to the fall on the right pallet,  (tw, l-r), is, 

then: 

 

                  tw,l-r= 0.002774 + 0.005770 + 0.0044 + 0.0009578 = 0.0139 [s]                 (12) 

 

This time is equal to one half the travel time of the Wheel in one Balance period T (= 0.4 s). 

 

In terms of average Wheel rotational speed when it is not stopped, having assumed a Wheel with 15 

teeth (angle between two adjacent teeth = 360°/15=24°) the figure of (12), corrected for the back-and-

forth unlocking movement of the Wheel, gives: 

 

                                  𝜔𝑤 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛 𝑡𝑤,𝑙−𝑟 =
12°

(0.0139−0.002774)
= 

12°

0.011126
= 1090 °/𝑠     (13) 

 

The overall (including both stop times and moving times) average rotational speed of the Wheel is for 

comparison: 
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                                    𝜔𝑤 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛 𝑇 =
2∗12°

𝑇
= 

24°

0.4
= 60°/𝑠                            (14) 

 

             The Gear Train decreases this value by a factor of 10 for seconds  hand (6°/s = 360°/minute), by 600 for 

minutes  hand (0.1°/s=360°/hr) and by  7200 (0.0083333°/s=30°/hr).  

The movement of the Wheel, according to the preceding data, is shown in Fig.4. 

 

t(s) alfa 
  

WHEEL 
     

0 -30 lock left 
 

 (t), °, [s] 
     

0,0014 -30,3335 recoil 
 

 

 
 

      0,002774 -30 
         0,008544 -23,5 
         0,011544 -19,5 
         0,0139 -18 lock right  

       0,199995 -18 
         0,201395 -18,3335 recoil 

        0,202765 -18 
         0,208535 -11,5 
         0,211535 -7,5 
         0,212493 -6 lock left 

        0,4 -6 end period 
       

           

           

           

           

           

         
                                                                               

           
 

 

                                            Fig. 4 – Wheel movement in one period 
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6- Anchor movement 

 

 

From the previous Section 4, Balance movement and  Section 5, Anchor movement, Fig. 5 can be drawn, which 

shows the anchor movement. 

Fig.6 shows the time history of Jewel Pin – Anchor shocks after the first contact towards right [Vermot 

CD,Section “Dégagement d’entrée”]. The total duration of the shocks is so short that it cannot be shown in 

Fig.5 “Anchor movement”, where the shocks time and resulting anchor angles are, however, listed. 

Fif. 7 shows the Balance, Anchor and Wheel movements together. 

 

 

 
 

 

                                                                Fig. 5 Anchor movement 
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 Fig. 6   Jewel Pin – Anchor shocks just after fork engagement towards right 
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Fig.7 Balance, Anchor and Wheel movements shown together 
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7- Balance Energy considerations 

 

7.1-Energy of the Balance 

This quantity is equal to the maximum Kinetic energy of the Balance at the maximum amplitude angle 

(= 270°): 

               𝐸𝑐𝑏𝑚𝑎𝑥   = 
1

2
 𝐽𝑏 𝜔𝑏𝑚𝑎𝑥

2  = 0.5 * 2 10-6 74.02242 = 

= 5 ∗ 10−1 ∗ 2 ∗ 10−6 ∗ 5.48 ∗ 103 = 54.8 ∗ 10−4 = 5.48 ∗ 10−3  [N mm]          (15) 

 

This quantity is calculated here as a reference for energy losses and gains of the Balance. 

 

7.2 – Energy lost during left unlocking  (El, lu)                                                                                                                                                                                                                                                                                                                                                                                                         

 

El,lu= Ft *f*lock = 
𝐶𝑤

𝑅1
* f*lock=

2.287∗10−3

2.728
∗ 0.2 ∗ 0.0436 =

2.287

2.728
∗ 10−3 ∗ 2 ∗ 10−1 ∗ 4.36 ∗ 10−2 =

7.310−6[𝑁 𝑚𝑚]                                                                                                                (16) 

 

 

Where: 

Ft is the tangential force transmitted by the Wheel to the Anchor pallet during unlocking, R1 is the 

contact radius of the Wheel . 

f, is the friction coefficient between Wheel tooth and Anchor pallet (assumed equal to 0.2) 
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lock is the sliding path of the Wheel tooth on the Anchor pallet during unlocking (=0.0436 [mm], 

corresponding to  equal to 2.5°) (see Section 5). 

The  final figure in (16) means that, because of symmetry between left and right lock, the energy lost 

by friction during one Balance period (0.4 [s]) is equal to 

 

                               2*7.3 10-6=1.46*10-5 [N mm]= 2.7 % of the energy of the Balance. 

 

In the preceding calculation the energy lost by friction on the Anchor staff during unlocking is neglected 

because of its small relative amount. 

 

7.3 Energy lost by the Balance during the initial shocks against the Anchor fork during unlocking 

 

This energy, due to the small entity of the Anchor moment of inertia ( 0.5% of the Balance moment), 

is usually neglected (see Section 4- and equation (5). In any case, this energy can be estimated since it 

should have the order of magnitude (except for the  influence of the restitution in shocks) to the 

Anchor kinetic energy after the first shocks of the Balance Jewel Pin and the Anchor fork. 

The moment of inertia of the Anchor is equal to   1.02 10-8 [N mm s2] (mass) and the rotational speed of 

the Anchor at the end of the shocks is 19.357 [s-1] ( [Vermot CD,Section “Dégagement d’entrée”]). 

The Anchor energy after the shocks is, then: 

 

              Ea, as= 
1

2
∗ 1.02 10−8 ∗ 19.3572 = 5 ∗ 10−1 ∗ 1.02 ∗ 10−8 ∗ 3.75 ∗ 102 = 19.1 ∗ 10−7 = 1.91 ∗

                      ∗ 10−6 [𝑁 𝑚𝑚]                                                                                                                                                                                         

                                                                                                                                                      (17) 

 

The same amount of energy is also lost at the shocks after the right unlocking and, therefore, in one 

period 

   Elost after shocks=2*1.91*10-6= 3.82 * 10-6 [N mm] 

 

And, as a percentage of maximum Balance energy  (15) 

 

   3.82*10-6 /  5.4793 10-3
 0.07 % 

 

This lost energy is really negligible in an overall balance. 

 

 

7.4- Energy loss due to lateral friction in the balance ( and in the Anchor ) staff 

 

It is assumed that the friction coefficient at this locations is equal to 0.15 (near the high end of the 

usual range 0.1 – 0.2 [Defossez]). The prevailing loss of energy is the one connected with the friction 
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between staff and the two bushings for forces on the staff perpendicular to its axis. The staff radius is 

assumed equal to 0.1 [mm]. Although the interested staffs are two (Balance and Anchor), here the 

reasoning is developed for one of them only, which represents both. 

The lateral forces acting on the Balance staff are the force originated from the push of the Wheel on 

the Anchor pallet and (in case of a vertical position of the watch) the weight of the Balance. This force 

propagates to Anchor and Balance in a number of couples (which originate or perturb the motion of 

Anchor and Balance) and in two reaction forces from the Balance and Anchor. As just mentioned, these 

two reaction forces are unified for similarity of phenomena in this rather simple treatment, which, 

however, shows the interplay of the main parameters and gives a useful numerical result. 

The tangential (peripheral) force Ft is equal to the one calculated in 7.2: 

 

                        Ft =  
𝐶𝑤 

𝑅1 
= 

2.287∗10−3

2.728
= 8.38*10-4 [N]                  (18) 

 

 

                       Adding the weight of the balance (vertical position of watch): 

 

                       Wb =59.5 [mg] = 5.95 10-4 [N]                                                                          

 

                      The energy lost for each alternance of the Balance is, then: 

 

 

                      ( Ft + 5.95 10-4) * f *0.1*  0 = (8.38*10-4+ 5.95 10-4 ) * 0.15 *0.1 * 4.7124 = 1.433*10-3*1.5*10-1*1 

10-1*4.7124= 10.13*10-5= 1.013  10-4 [N mm] 

 

And for one period of Balance oscillation: 

                           

                        El,f = 2.03 10-4 [N mm]                                                                                   (19) 

 

The above presented evaluation can be refined at will dividing the run of the Anchor in various phases 

(lock, impulses, fall) and using appropriate values of parameters for each phase. The true angle of 

motion of the Anchor (12°) with respect to that of the Balance (270°= 4.7124 [rad]) can also be taken 

into account. Here a clear and simplified example of calculation is given, which, however gives a 

sufficient estimate of this energy loss.   

The simple summing of the weight of the Balance to the lateral impulse forces on its staff is also  

extreme and somewhat unrealistic. This evaluation could be also refined on the basis of statistical data 

on the movements of the watch during use.   

Now, also the assumption can be made that, at least for some period of time, there is no contact 

friction between Balance staff and its bushing and that a situation of fluid-dynamic  staff support is 

established. 
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In this case, the tangential viscous force per unit area of the staff surface is: 

 

                                                         𝜏 =  𝜇 
𝑑𝑉

𝑑𝑟
 [

𝑁

𝑚𝑚2
]       (20) 

 

The tangential force on the staff is then 𝐹𝑡 = 𝜏 𝑆 [𝑁]                                                  (21)             

Where S is the portion of the staff surface on which  acts. 

 

The following data are here assumed: 

 is the kinematic viscosity of the oil and since is assumed equal to 150 [mm2/s] and the 

relative density of oil is assumed 0.97,  = 150 *  10-9 = 1.5 10-7 [N s /mm2] 

-  is the oil density, assumed equal to 0.97; (=0.97/98 [kg s/dm4] = 0.97 *9.8/98 108 [N s/mm4]  

10-1 *10-8= 10-9  [N s/mm4] 

- V, the tangential speed of the staff is assumed, on the average, equal to 40[r/s], average rotational 

speed, times 0.1, staff radius, V= 4 [mm/s] 

- dr is the gap between staff and bushing, assumed of the order of 0.005[mm] 

- the surface area where  acts is supposed to span for 90° degrees circumferentially  on the staff and for 

1mm in the axial direction of it S= /2 * 0.1 * 1 = 0.16 [mm2] 

 

The viscous hydrodynamic couple is then : 

 

 Ch = 1.5 10-7 *4/0.005 *0.16 * 0.1 = 1.5*10-7*4*2*102*1.6 10-1*10-1= 19.2 10-7  = 1.92 10-6 [Nmm] 

And the energy lost in one period is: 

 

                         Et, h = 1.92 10-6 * 2 * 4.7124 = 1.81 10-5 [N mm] (22) 

 

This lost energy is about 10% of that of a contact friction calculated above. 

 

 

7.5- Energy loss due to tip of staff   friction on its rest in the balance ( and in the Anchor ) 

                          y 

r

Staff

StoneStone

Stone

                                                                                


                        

Fig. 8 Staff – Stone rest 
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In the case where the watch has been kept in horizontal position, the friction loss of the Balance staff 

happens at the circular contact surface between staff end and supporting stone (Fig. 8). 

 

The energy lost in one period is: 

 

𝐸𝑙,𝑓 = 2 ∗ 𝜃0 ∗ ∫  
𝑅

0

𝑀𝑏
𝜋 𝑅2

 𝑓 ∗ 2 𝑟 ∗ 𝑟𝑑𝑟 = 2 ∗ 𝜗0 ∗
𝑅3

3
∗  
𝑀𝑏
𝜋 𝑅2

∗ 𝑓 ∗ 2  =

= 2 ∗ 4.7124 ∗ 10−1 ∗ 3.3 10−1 ∗  5.95 10−4 ∗ 2 ∗ 1.5 10−1 = 555.17 10−7

= 5.6 10−5 [𝑁 𝑚𝑚] 

                                                                                                                                        (23) 

 

Which is a smaller figure than that of Section 7.4. Between 7.4 and 7.5 alternatives, 7.4 is adopted in 

the conclusions. 

 

 

 

7.6 Energy lost by the Balance for aerodynamic drag  

The order of magnitude only will be calculated here since the importance of this energy loss is minor. 

The surfaces exposed to the aerodynamic drag are mainly the lateral surfaces of the Balance four arms 

and the lateral surface of the spiral in its motion towards and away from the Balance center.  

The following data have been used: 

-air density (mass):a =0.125 [Kg s2/m4]= 0.125 *9.8 /1012 = 1.225 10-12 [N s2/mm4] 

- drag coefficient (rectangular surface perpendicular to flow): Cd= 1.17 

- surface of Balance exposed to drag, S [mm2]: 4 arms of Balance (3.4 [mm2] + spiral 17/16 [mm2]= 4.5 

[mm2] (the surface of the spiral has been reduced by a factor of 16=42 due to estimated difference in 

impacting air speed with respect to arms) 

- average rotational speed: 74/2=37 [s-1] 

- effective average speed of air, V:  37 [rad/s]* 2.15 [mm]= 79.6 [mm/s] 

-lever arm of the drag force (estimated): 2.8 [mm] 

- angle rotated by Balance in one period: 2*270° = 9.42 [rad] 

 

𝐸𝑙,𝑎 = 
1

2
 𝐶𝑑  𝜌𝑎 𝑆 𝑉

2 ∗ 2.8 *9.42= 0.5  1.17  1.225 10-12  4.5  79.62 = 

= 5 10−1 ∗ 1.17 ∗ 1.225 10−12 ∗ 4.5 ∗ 6.34 103 = 204 10−10 = 2.04 102 ∗ 10−10 =

2.04 10−8[𝑁 𝑚𝑚] ]         

 

                                                                                                                                                                                (24) 

  

Which confirms that this item is negligible. 
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7.7 Energy supplied to the Balance during the impulse phases in one period 

 
                           Fig. 9 Left impulse phase 

 

 

 

From a drawing like Fig. 9. and other general data concerning power couple, it is possible to calculate the work 

done by the Wheel on the Anchor (Ei , which is ultimately transmitted to the Balance) during each impulse 

phase. Fig. 9 represents the geometrical situation  in the middle of the left impulse , assumed as representing 

the average situation during impulse (this calculation can be made more precise by a further subdivision in 

phases). 

The symbols and data are almost the same as in Section 7.2 plus those shown in Fig.9. The formulas are the 

following ones: 

 

Canchor (couple transmitted to anchor by wheel) =P * bp ;                            P=Ft/cos(90°-c-

 Ft= Cw/R1      (see (18));                  Ei=P bpi    (work during impulse of angular amplitude    i =8.5°=0.148[rad])           

                                                                              (25) 

f=tan () is assumed here as in 7.2 equal to 0.2; then  is 0.197 [rad], 11.29°  . 

 

It is assumed, as in equidistant escapements, that R2/R1=tan()=0.577 tan(c) 
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The scale of the drawing in Fig.9 can be obtained by the knowledge of the distance between O1 and O2 = 3.15 

[mm]; bp is then 1.161 [mm] and R1 is 2.7373[mm].   

P=8.38 10-4  (see (18)) /cos((90-26.65-11.29)/57.2958)= 8.38 10-4 /6.15 10-1= 1.35*10-3 [N] 

Canchor= 1.35*10-3* 1.161=1.57 10-3 [N mm] 

Ei=Canchor * i = 1.57 10-3 *8.5/57.2958 =1.57 10-3 * 1.5 10-1=2.355 10-4  [N mm] 

 

In one period the energy gain is put equal to the double for simplicity (in reality the exit impulse couple is 

higher than the left one because its lever arm is larger [Reymondin]). 

Ei =4.71 10-4 [N mm] 

 

7.8 Summary of energy balance and consequences 

 

Energy loss or gain in one Balance oscillation period (0.4 s) 

[N mm] 

Loss Gain Percentage 

of Balance 

energy 

E. lost during unlocking -1.46 10-5  1.76 10-5 

/5.48 10-3 

= 0.27% 

E. lost during initial shocks -3.82 10-6  negligible 

E. lost by friction in the Balance staff -2.03 10-4  3.7% 

E. lost at the tip of staff (friction) (-5.6 10-5)  1% 

E. lost for aerodynamic drag -2.04 10-8  negligible 

E gain during impulse phases  4.71 10-4 8.6 % 

    

TOTAL -2.176*10-4 4.71 10-4  

E =Difference = 2.534 10-4 [Nmm]   4.6% 
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E = 1/2 Jb (
w


w


w








s2];  w[/s]  

ddwmax/[rad] =6.16°                                                                                                      

 

It can be concluded, with the possibility to perform more precise calculations as indicated above, that the 

Balance will adjust to a maximum angle of oscillation different by a small angle  from the initially assumed one. 

This is a rather convincing indication of the realistic nature of the calculation method here suggested. 

For clarity, the change of Balance amplitude of oscillation can compensate moderate unbalances in energy 

losses and gains. The energy loss is, in fact, essentially proportional to Balance amplitude, while energy gain is 

not (fixed position of Banking Pins). Similarly, any moderate change in the power couple Cw can be 

compensated by a change of Balance oscillation amplitude. Moreover, any moderate change in oscillation 

amplitude does not affect oscillation period. This escapement, then, is self-adjusting in front of energy 

unbalances ( which can be originated by unbalances between Balance energy losses and gains or by insufficient 

watch motive power. 

 

7.7 Quality factor 

For supporters of this factor, the result here is: 

𝑄 = 𝜋 
𝑠𝑡𝑜𝑟𝑒𝑑 𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 (𝐵𝑎𝑙𝑎𝑛𝑐𝑒)

𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑡 𝑝𝑒𝑟 ℎ𝑎𝑙𝑓 𝑐𝑦𝑐𝑙𝑒
=  𝜋

5.48 10−3

1. 09 10−4
= 158

 

 

 

 

8- Final Considerations emerging from the preceding treatment 

 

- It is usually said that time “is the indefinite  continued progress of existence and events that occur in 

apparently irreversible succession from the past to the present to the future”. “…. it may be that there 

is a  subjective component to time, but whether or not time itself is "felt", as a sensation, or is a 

judgment, is a matter of debate.” There are, however, different views of time in physics, philosophy 

and religion. Time perception varies according to the phenomena under consideration. We speak of 

physical time, biological time, continuous and quantized time. It could be said that the time 

perceived by an observer of a lever escapement mechanism in operation is a quantized time, a 

more scientific expression than that of  a “stop and go” process. 

- The “ time showing” part of an anchor lever escapement (starting with the Wheel) stays stopped for 

about 90% of the time; since an intentionally stopped time keeping device is absolutely precise 
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(indeed, only one possible speed, namely zero speed, exists), this feature adds to the overall watch 

precision             

- As mentioned in Section 7, the Balance oscillator is nearly “isochronous” (as in other escapement 

mechanisms) so its oscillation period is not significantly influenced by its amplitude; moreover, the 

whole escapement is self – adjusting, namely any unbalance in its energy is firstly compensated by 

a variation of the Balance amplitude of oscillations with no variation of the oscillation period: this 

features are fundamental for the precision of the escapement.  

- A large value of the oscillation amplitude o and Wheel  impulses located at a small Balance oscillation 

angle , contribute to the  attenuation of the disturbances to the oscillation Period (see Airy’s formula 

(4)).  

- Finally a rather low level remark: the lever anchor escapement is rather flat and so it is suitable for 

wrist watches. 

 

 

9- APPENDIX 

FUNCTIONING AND FEATURES OF THE SWISS LEVER ANCHOR ESCAPEMENT 

 

 

 

BP1 BP2

1
2

 
 

                     Fig.  10   The two Wheel blockage positions during the escapement motion. 

 

In this escapement type, two mechanical parts transmit energy from the escapement Wheel (and ultimately 

from the power spring of the watch) to the Balance: the Anchor with its fork and the jewel pin of the Balance. 
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The Balance acts as the regulator of the Wheel (and of the watch hands) movement. The energy lost by the 

Balance (friction and  shocks principally) is compensated by the impulses transmitted to it by the Wheel  via the 

Anchor.  

In  the instants immediately before the position 1 of Fig. 10      , while the Balance freely moves counter  

clockwise running through one of its, so called, supplementary angles without contact with the Anchor, one of 

the Wheel teeth rests on the “rest plane” of the Anchor “entrance” pallet. The Wheel is blocked as all other 

components of the escapement except the jewel pin which is part of the Balance. The Wheel can be 

alternatively stopped either by the left pallet or by the right pallet of the Anchor. The Anchor is stopped by one 

of the block pins BP1 and BP2.  

In these conditions the Balance rotates counter-clockwise (assumed as positive direction for the Balance 

movement) and at a certain moment the jewel pin enters in the Anchor fork and forces it to rotate around the 

center O2 towards right. The left pallet is freed and the previously blocked left tooth of the Wheel which is now 

free to move, under the power continuously transmitted by the watch power spring, in the clockwise (for the 

Wheel and Anchor positive) direction. The Wheel is free for a short time only since it immediately meets the 

impulse plane of the entry (left) moving pallet. The Wheel tooth pushes  Anchor  in the clockwise (positive) 

direction. This movement is strongly accelerated, to the point that shortly the fork attains a speed higher than 

that of the jewel pin and start pushing it with an inversion of roles. The Anchor impulse gives to the Balance an 

additional acceleration, which compensates the losses of energy due to internal resistances (friction, etc.). The 

Balance has oscillations of the same amplitude if the damping and the supplied energy continue to exactly 

compensate each other.  The impulse lasts until the left tooth leaves the impulse plane of the pallet. The Wheel 

is again free, but its movement is stopped when the right tooth falls on the rest face of the exit pallet (right). At 

the same instant the fork is very close to the banking pin BP2 (right) which it will reach after having run for a 

small angle. The Fork, the Anchor and the Wheel are then stopped.The Jewel Pin leaves the fork and continues 

with the Balance its movement in a clockwise direction. After the Jewel Pin has left the fork, the Balance is 

completely free; it describes the “supplementary arc” (a long arc, about 270° wide, shown in Fig. 3) until the 

end of the Balance span, when the growing couple of the spiral stops it and forces it to invert its path. From 

this point on, the supplementary arc is described in a clockwise direction and the following events are as in the 

preceding alternance: 

- entrainment of the fork and of the Anchor by the Jewel Pin and, at the same time, unlocking of the 

right tooth of the Wheel; 

- impulse on the Anchor by the right tooth and consequent acceleration of the movement of the fork 

which becomes a driver and increases the speed of the Balance; 

- once the impulse stops, the tooth at left falls on the left pallet and the fork is stopped by BP1 while the 

Balance continues its movement in a clockwise direction (supplementary angle) 

- the Jewel Pin again enters the Anchor fork at left and forces the Anchor to rotate clockwise  

- the above described events then repeat again.  
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10- SYMBOLS AND DATA USED  

 

 

 

bp, lever arm of impulse force P on Anchor (1.61 [mm])  

 

BP, Banking Pins 

 

Canchor, couple on Anchor during impulse  (7.5) 

 

Ch, viscous hydrodynamic couple on Balance staff 

 

Cw, Couple transmitted to the Wheel by the Gear Train, 2.287*10-3 [N mm] [form [Vermot] CD, Data] 

 

D, Balance Jewel Pin, Fig. 2 

 

Equidistant escapement, escapement in which the locking faces of the two pallets are at the same distance 

from the anchor staff 

 

Ei , energy transmitted from Wheel to Anchor and to Balance during the impulse phase 

 

El,f energy lost in the Balance and Anchor staffs for each Balance oscillation period 

 

f, friction coefficient between Wheel tooth and Anchor pallet during unlocking (= 0.2) 

 

Ft, tangential force transmitted from the Wheel to the Anchor pallet [N] 

 

K, rotational elastic constant of the Balance spiral spring, 5.03 10-4 [N mm /rad] 

 

Ja, moment of inertia (mass) of Anchor , 1.02 10-8 [N mm s2] 

 

Ja+gt, moment of inertia (mass) of Anchor + Gear Train, 2.1 10-8 [N mm s2] 

 

Jb , moment of inertia  (mass) of Balance,  2 10-6 [N mm s2] 
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Jgt, moment of inertia (mass) of the Wheel plus Gear Train, 2.53 10-8 [N mm s2]  

 

Jewel Pin D:     pin of the balance which impacts on the anchor fork, Fig. 2 

 

Lock:     term used by horologists for the penetration, in a lever escapement, of the escape-wheel tooth a on 

the pallet-stone b, after the impulse on the preceding tooth. 

The amount of lock is measured from the centre of the lever by the locking-angle  in the drawing below)        

, which may vary between 1° 30' and 3°, i.e. a linear value of about 0.026 to 0.0524 mm.  

 

 

 

Mb,  Weight  of the Balance, (59.5 mg) 

 

O1, O2, O3, Centers of rotation of Wheel, Anchor and Balance (Fig. 2) 

 

O1O2, segment of length 3.15 [mm] 

 

O2O3, segment of length 3.4 [mm] 

 

𝑂3 𝑂1 
→       Oriented vector for the reference abscissa of equation (1) 

 

P, force transmitted from Wheel tooth to Anchor pallet during impulse phase [N] 

 

R, radius of the Balance staff tip (Fig. 8), 0.1 mm 

 

R1, radius of the contact point of Wheel and pallets with center O1, 2.728 [mm] 

 

T, own period of Balance oscillation, 0.4 [s] 

 

, angle of rotation of Wheel starting clockwise from the block left position, Pos.1 ( Fig. 2) 

 

0, left block angle of the Wheel (= -30°, see Fig. 2)  

 

c , average angle ( as seen from O1 of the impulse to the Anchor pallet (26.65° from drawing, Fig.9) 
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p = 0.11345 [rad], first part of the left impulse to the anchor pallet (pallet impulse) 

 

t = 0.06981[rad], second part of the left  impulse  (tooth impulse) 

 

e, left pallet draw angle =  13° 

 

e, unlocking angle for the anchor as seen from O1 (the total unlocking angle for the Wheel  is the double of this 

value = 0.00582 

 

 ∆𝑇𝑣𝑎𝑟, variation of the Balance period for each impact against the Anchor fork [s] 

 

, unlocking angle of the Anchor as seen from O2, 2.5° 

 

c, restitution coefficient in impacts, 0.65 

 

, oscillation angle of the Balance, positive in counter-clockwise direction 

 

0 , maximum oscillation angle of the Balance (initial tentative value for “basic model” = 270°=3/2 [rad] 

=4.7124 [rad]) 

 

 , angle during which the anchor receives the impulse of the Balance ( = 8.5° for each alternance) 

 

Φ, friction angle on the impulse plane, 11.29° 

 

density (mass) 

 

bmax= maximum real rotational speed of the Balance 74.0224 [rad/s] 

 

 𝜔0,  own rotational speed of the Balance (= 2𝜋/𝑇)   , 15.858 [rad/s] 

 

𝜔𝑤, rotational speed of wheel [rad/s]  
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